William George Horner. Xxi. a new method of solving numerical equations of all orders, by continuous approximation. Philosophical Transactions of the Royal Society of London, pages 308–335, 1819.


Martine Ceberio and Vladik Kreinovich. Greedy algorithms for optimizing multivariate horner schemes. ACM SIGSAM Bulletin, 38(1):8–15, 2004.


Juan Manuel Peña and Thomas Sauer. On the multivariate Horner scheme. SIAM journal on numerical analysis, 37(4):1186–1197, 2000.


Juan Manuel Peña and Thomas Sauer. On the multivariate Horner scheme II: running error analysis. Computing, 65(4):313–322, 2000.


Lloyd Trefethen. Multivariate polynomial approximation in the hypercube. Proceedings of the American Mathematical Society, 145(11):4837–4844, 2017.


Michael Hecht, Karl B Hoffmann, Bevan L Cheeseman, and Ivo F Sbalzarini. Multivariate Newton interpolation. arXiv preprint arXiv:1812.04256, 2018.


Michael Hecht and Ivo F. Sbalzarini. Fast interpolation and Fourier transform in high-dimensional spaces. In K. Arai, S. Kapoor, and R. Bhatia, editors, Intelligent Computing. Proc. 2018 IEEE Computing Conf., Vol. 2,, volume 857 of Advances in Intelligent Systems and Computing, 53–75. London, UK, 2018. Springer Nature.


J Carnicer and M Gasca. Evaluation of multivariate polynomials and their derivatives. Mathematics of Computation, 54(189):231–243, 1990.


Jan Kuipers, Aske Plaat, JAM Vermaseren, and H Jaap van den Herik. Improving multivariate Horner schemes with Monte Carlo tree search. Computer Physics Communications, 184(11):2391–2395, 2013.


Martin Mok-Don Lee. Factorization of multivariate polynomials. PhD thesis, Technische Universität Kaiserslautern, 2013.


Charles E Leiserson, Liyun Li, Marc Moreno Maza, and Yuzhen Xie. Efficient evaluation of large polynomials. In International Congress on Mathematical Software, 342–353. Springer, 2010.


Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.


Masakazu Kojima. Efficient evaluation of polynomials and their partial derivatives in homotopy continuation methods. Journal of the Operations Research Society of Japan, 51(1):29–54, 2008.