
multivar_horner
Release /bin/sh: 1: poetry: not found

Jannik Kissinger

Apr 12, 2024

CONTENTS:

1 Getting started 3
1.1 Installation . 3
1.2 Basics . 3

2 Usage 5
2.1 Horner factorisation . 6
2.2 canonical form . 6
2.3 string representation . 7
2.4 change the coefficients of a polynomial . 8
2.5 optimal Horner factorisations . 8
2.6 Caching . 9
2.7 evaluating a polynomial . 9
2.8 evaluating a polynomial at complex query points . 10
2.9 computing the partial derivative of a polynomial . 10
2.10 computing the gradient of a polynomial . 10

3 About 13
3.1 Dependencies . 14
3.2 License . 14
3.3 Benchmarks . 14
3.4 Related work . 20
3.5 Contact . 20
3.6 Acknowledgements . 20

4 Optimal Horner Factorisations 21

5 API documentation 23
5.1 HornerMultivarPolynomial . 23
5.2 MultivarPolynomial . 27
5.3 HornerMultivarPolynomialOpt . 30

6 Contribution Guidelines 33
6.1 Types of Contributions . 33
6.2 Get Started! . 34

7 Changelog 35
7.1 3.x.x (TBA) . 36
7.2 3.1.0 (2023-02-15) . 36
7.3 3.0.5 (2022-12-10) . 36
7.4 3.0.4 (2022-07-10) . 36
7.5 3.0.3 (2022-06-15) . 37

i

7.6 3.0.2 (2022-06-14) . 37
7.7 3.0.1 (2021-12-04) . 37
7.8 2.2.0 (2021-02-04) . 38
7.9 2.1.1 (2020-10-01) . 38
7.10 2.1.0 (2020-06-15) . 38
7.11 2.0.0 (2020-04-28) . 38
7.12 1.3.0 (2020-03-14) . 39
7.13 1.2.0 (2019-05-19) . 39
7.14 1.1.0 (2019-02-27) . 40
7.15 1.0.1 (2018-11-12) . 40
7.16 1.0.0 (2018-11-08) . 40
7.17 0.0.1 (2018-10-05) . 40

8 References 41

9 Indices and tables 43

Bibliography 45

Python Module Index 47

Index 49

ii

multivar_horner, Release /bin/sh: 1: poetry: not found

a python package implementing a multivariate Horner scheme (“Horner’s method”, “Horner’s rule”)[1] for efficiently
evaluating multivariate polynomials.

CONTENTS: 1

https://github.com/jannikmi/multivar_horner/actions?query=branch%3Amaster
https://multivar_horner.readthedocs.io/en/latest/?badge=latest
https://pypi.python.org/pypi/multivar-horner
https://github.com/pre-commit/pre-commit
https://pepy.tech/project/multivar-horner
https://pypi.python.org/pypi/multivar-horner
https://joss.theoj.org/papers/0b514c6894780f3cc81ed88c141631d4
https://zenodo.org/badge/latestdoi/155578190
https://en.wikipedia.org/wiki/Horner%27s_method

multivar_horner, Release /bin/sh: 1: poetry: not found

2 CONTENTS:

CHAPTER

ONE

GETTING STARTED

1.1 Installation

Installation with pip:

pip install multivar_horner

For efficiency this package is compiling the instructions required for polynomial evaluation to C by default. If you don’t
have a C compiler (gcc or cc) installed you also need to install numba for using an alternative method:

pip install multivar_horner[numba]

1.2 Basics

Let’s consider this example multivariate polynomial:

𝑝(𝑥) = 5 + 1𝑥3
1𝑥

1
2 + 2𝑥2

1𝑥
1
3 + 3𝑥1

1𝑥
1
2𝑥

1
3

Which can also be written as:

𝑝(𝑥) = 5𝑥0
1𝑥

0
2𝑥

0
3 + 1𝑥3

1𝑥
1
2𝑥

0
3 + 2𝑥2

1𝑥
0
2𝑥

1
3 + 3𝑥1

1𝑥
1
2𝑥

1
3

A polynomial is a sum of monomials. Our example polynomial has 𝑀 = 4 monomials and dimensionality 𝑁 = 3.

The coefficients of our example polynomial are: 5.0, 1.0, 2.0, 3.0

The exponent vectors of the corresponding monomials are:

• [0, 0, 0]

• [3, 1, 0]

• [2, 0, 1]

• [1, 1, 1]

To represent polynomials this package requires the coefficients and the exponent vectors as input.

This code shows how to compute the Horner factorisation of our example polynomial 𝑝 and evaluating 𝑝 at a point 𝑥:

import numpy as np
from multivar_horner import HornerMultivarPolynomial

coefficients = np.array([[5.0], [1.0], [2.0], [3.0]], dtype=np.float64) # shape: (M,1)
exponents = np.array(

(continues on next page)

3

multivar_horner, Release /bin/sh: 1: poetry: not found

(continued from previous page)

[[0, 0, 0], [3, 1, 0], [2, 0, 1], [1, 1, 1]], dtype=np.uint32
) # shape: (M,N)
p = HornerMultivarPolynomial(coefficients, exponents)

x = np.array([-2.0, 3.0, 1.0], dtype=np.float64) # shape: (1,N)
p_x = p(x) # -29.0

Note: with the default settings the input is required to have these data types and shapes

With the class HornerMultivarPolynomial a polynomial can be represented in Horner factorisation.

With the class HornerMultivarPolynomialOpt a polynomial can be represented in an optimal Horner factorisation.

With the class MultivarPolynomial a polynomial can be represented in canonical form.

All available features of this package are explained HERE.

The API documentation can be found HERE.

4 Chapter 1. Getting started

CHAPTER

TWO

USAGE

Note: Also check out the API documentation or the code.

Let’s look at the example multivariate polynomial:

𝑝(𝑥) = 5 + 1𝑥3
1𝑥

1
2 + 2𝑥2

1𝑥
1
3 + 3𝑥1

1𝑥
1
2𝑥

1
3

Which can also be written as:

𝑝(𝑥) = 5𝑥0
1𝑥

0
2𝑥

0
3 + 1𝑥3

1𝑥
1
2𝑥

0
3 + 2𝑥2

1𝑥
0
2𝑥

1
3 + 3𝑥1

1𝑥
1
2𝑥

1
3

A polynomial is a sum of monomials. Our example polynomial has 𝑀 = 4 monomials and dimensionality 𝑁 = 3.

The coefficients of our example polynomial are: 5.0, 1.0, 2.0, 3.0

The exponent vectors of the corresponding monomials are:

• [0, 0, 0]

• [3, 1, 0]

• [2, 0, 1]

• [1, 1, 1]

To represent polynomials this package requires the coefficients and the exponent vectors as input.

import numpy as np

coefficients = np.array(
[[5.0], [1.0], [2.0], [3.0]], dtype=np.float64

) # numpy (M,1) ndarray
exponents = np.array(

[[0, 0, 0], [3, 1, 0], [2, 0, 1], [1, 1, 1]], dtype=np.uint32
) # numpy (M,N) ndarray

Note: by default the Numba jit compiled functions require these data types and shapes

5

https://github.com/jannikmi/multivar_horner

multivar_horner, Release /bin/sh: 1: poetry: not found

2.1 Horner factorisation

to create a representation of the multivariate polynomial 𝑝 in Horner factorisation:

from multivar_horner import HornerMultivarPolynomial

horner_polynomial = HornerMultivarPolynomial(coefficients, exponents)

the found factorisation is 𝑝(𝑥) = 𝑥1
1(𝑥

1
1(𝑥

1
1(1.0𝑥

1
2) + 2.0𝑥1

3) + 3.0𝑥1
2𝑥

1
3) + 5.0.

pass rectify_input=True to automatically try converting the input to the required numpy data structures and types

coefficients = [5.0, 1.0, 2.0, 3.0]
exponents = [[0, 0, 0], [3, 1, 0], [2, 0, 1], [1, 1, 1]]
horner_polynomial = HornerMultivarPolynomial(

coefficients, exponents, rectify_input=True
)

pass keep_tree=True during construction of a Horner factorised polynomial, when its factorisation tree should be
kept after the factorisation process (e.g. to be able to compute string representations of the polynomials later on)

horner_polynomial = HornerMultivarPolynomial(coefficients, exponents, keep_tree=True)

Note: for increased efficiency the default for both options is False

2.2 canonical form

it is possible to represent the polynomial without any factorisation (refered to as ‘canonical form’ or ‘normal form’):

from multivar_horner import MultivarPolynomial

polynomial = MultivarPolynomial(coefficients, exponents)

use this if . . .

• the Horner factorisation takes too long

• the polynomial is going to be evaluated only a few times

• fast polynomial evaluation is not required or

• the numerical stability of the evaluation is not important

Note: in the case of unfactorised polynomials many unnecessary operations are being done (internally uses naive
numpy matrix operations)

6 Chapter 2. Usage

multivar_horner, Release /bin/sh: 1: poetry: not found

2.3 string representation

in order to compile a string representation of a polynomial pass compute_representation=True during construction

Note: the number in square brackets indicates the number of multiplications required to evaluate the polynomial.

Note: exponentiations are counted as exponent - 1 operations, e.g. x^3 <-> 2 operations

polynomial = MultivarPolynomial(coefficients, exponents)
print(polynomial) # [#ops=10] p(x)

polynomial = MultivarPolynomial(coefficients, exponents, compute_representation=True)
print(polynomial)
[#ops=10] p(x) = 5.0 x_1^0 x_2^0 x_3^0 + 1.0 x_1^3 x_2^1 x_3^0 + 2.0 x_1^2 x_2^0 x_3^1␣
→˓+ 3.0 x_1^1 x_2^1 x_3^1

horner_polynomial = HornerMultivarPolynomial(
coefficients, exponents, compute_representation=True

)
print(horner_polynomial.representation)
[#ops=7] p(x) = x_1 (x_1 (x_1 (1.0 x_2) + 2.0 x_3) + 3.0 x_2 x_3) + 5.0

the formatting of the string representation can be changed with the parameters coeff_fmt_str and factor_fmt_str:

polynomial = MultivarPolynomial(
coefficients,
exponents,
compute_representation=True,
coeff_fmt_str="{:1.1e}",
factor_fmt_str="(x{dim} ** {exp})",

)

the string representation can be computed after construction as well.

Note: for HornerMultivarPolynomial: keep_tree=True is required at construction time

polynomial.compute_string_representation(
coeff_fmt_str="{:1.1e}", factor_fmt_str="(x{dim} ** {exp})"

)
print(polynomial)
[#ops=10] p(x) = 5.0e+00 (x1 ** 0) (x2 ** 0) (x3 ** 0) + 1.0e+00 (x1 ** 3) (x2 ** 1)␣
→˓(x3 ** 0)
+ 2.0e+00 (x1 ** 2) (x2 ** 0) (x3 ** 1) + 3.0e+00 (x1 ** 1) (x2 **␣
→˓1) (x3 ** 1)

2.3. string representation 7

multivar_horner, Release /bin/sh: 1: poetry: not found

2.4 change the coefficients of a polynomial

in order to access the polynomial string representation with the updated coefficients pass
compute_representation=True with in_place=False a new polygon object is being generated

Note: the string representation of a polynomial in Horner factorisation depends on the factorisation tree. the polyno-
mial object must hence have keep_tree=True

new_coefficients = [
7.0,
2.0,
0.5,
0.75,

] # must not be a ndarray, but the length must still fit
new_polynomial = horner_polynomial.change_coefficients(

new_coefficients,
rectify_input=True,
compute_representation=True,
in_place=False,

)

2.5 optimal Horner factorisations

use the class HornerMultivarPolynomialOpt for the construction of the polynomial to trigger an adapted A* search
to find the optimal factorisation.

See this chapter for further information.

Note: time and memory consumption is MUCH higher!

from multivar_horner import HornerMultivarPolynomialOpt

horner_polynomial_optimal = HornerMultivarPolynomialOpt(
coefficients,
exponents,
compute_representation=True,
rectify_input=True,

)

8 Chapter 2. Usage

multivar_horner, Release /bin/sh: 1: poetry: not found

2.6 Caching

by default the instructions required for evaluating a Horner factorised polynomial will be cached either as .c file or
.pickle file in the case of numpy+numba evaluation.

One can explicitly force the compilation of the instructions in the required format:

horner_polynomial = HornerMultivarPolynomial(
coefficients, exponents, store_c_instr=True, store_numpy_recipe=True

)

If you construct a Horner polynomial with the same properties (= exponents) these cached instructions will be used for
evaluation and a factorisation won’t be computed again. Note that as a consequence you won’t be able to access the
factorisation tree and string representation in these cases.

the cached files are being stored in <path/to/env/>multivar_horner/multivar_horner/__pychache__/

horner_polynomial.c_file
horner_polynomial.c_file_compiled
horner_polynomial.recipe_file

you can read the content of the cached C instructions:

instr = horner_polynomial.get_c_instructions()
print(instr)

you can also export the whole polynomial class (including the string representation etc.):

path = "file_name.pickle"
polynomial.export_pickle(path=path)

to load again:

from multivar_horner import load_pickle

polynomial = load_pickle(path)

2.7 evaluating a polynomial

in order to evaluate a polynomial at a point x:

define a query point and evaluate the polynomial
x = np.array([-2.0, 3.0, 1.0], dtype=np.float64) # numpy ndarray with shape [N]
p_x = polynomial(x) # -29.0

or

p_x = polynomial.eval(x) # -29.0

or

x = [-2.0, 3.0, 1.0]
p_x = polynomial.eval(x, rectify_input=True) # -29.0

2.6. Caching 9

multivar_horner, Release /bin/sh: 1: poetry: not found

As during construction of a polynomial instance, pass rectify_input=True to automatically try converting the input
to the required numpy data structure.

Note: the default for both options is False for increased speed

Note: the dtypes are fixed due to the just in time compiled Numba functions

2.8 evaluating a polynomial at complex query points

x = [np.complex(-2.0, 1.0), np.complex(3.0, -1.0), np.complex(1.0, 0.5)]
p_x = polynomial.eval_complex(x, rectify_input=True)

2.9 computing the partial derivative of a polynomial

Note: BETA: untested feature

Note: partial derivatives will be instances of the same parent class

Note: all given additional arguments will be passed to the constructor of the derivative polynomial

Note: dimension counting starts with 1 -> the first dimension is #1!

deriv_2 = polynomial.get_partial_derivative(2, compute_representation=True)
p(x) = x_1 (x_1^2 (1.0) + 3.0 x_3)

2.10 computing the gradient of a polynomial

Note: BETA: untested feature

Note: all given additional arguments will be passed to the constructor of the derivative polynomials

grad = polynomial.get_gradient(compute_representation=True)
grad = [
p(x) = x_1 (x_1 (3.0 x_2) + 4.0 x_3) + 3.0 x_2 x_3,
p(x) = x_1 (x_1^2 (1.0) + 3.0 x_3),

(continues on next page)

10 Chapter 2. Usage

multivar_horner, Release /bin/sh: 1: poetry: not found

(continued from previous page)

p(x) = x_1 (x_1 (2.0) + 3.0 x_2)
]

2.10. computing the gradient of a polynomial 11

multivar_horner, Release /bin/sh: 1: poetry: not found

12 Chapter 2. Usage

CHAPTER

THREE

ABOUT

multivar_horner is a python package implementing a multivariate Horner scheme (“Horner’s method”, “Horner’s
rule”)[1] for efficiently evaluating multivariate polynomials.

For an explanation of multivariate Horner factorisations and the terminology used here refer to e.g. Greedy algorithms
for optimizing multivariate Horner schemes [2]

A given input polynomial in canonical form (or normal form) is being factorised according to the greedy heuristic
described in [2] with some additional computational tweaks. The resulting Horner factorisation requires less operations
for evaluation and is being computed by growing a “Horner Factorisation Tree”. When the polynomial is fully factorized
(= all leaves cannot be factorised any more), a computational “recipe” for evaluating the polynomial is being compiled.
This “recipe” (stored internally as numpy arrays) enables computationally efficient evaluation. Numba just in time
compiled functions operating on the numpy arrays make this fast. All factors appearing in the factorisation are being
evaluated only once (reusing computed values).

Pros:

• computationally efficient representation of a multivariate polynomial in the sense of space and time complexity
of the evaluation

• less roundoff errors [3, 4]

• lower error propagation, because of fewer operations [2]

Cons:

• increased initial computational requirements and memory to find and then store the factorisation

The impact of computing Horner factorisations has been evaluated in the benchmarks below.

With this package it is also possible to represent polynomials in canonical form and to search for an optimal Horner
factorisation.

Also see: GitHub, PyPI, arXiv paper

13

https://github.com/jannikmi/multivar_horner/actions?query=branch%3Amaster
https://multivar_horner.readthedocs.io/en/latest/?badge=latest
https://pypi.python.org/pypi/multivar-horner
https://github.com/pre-commit/pre-commit
https://pepy.tech/project/multivar-horner
https://pypi.python.org/pypi/multivar-horner
https://joss.theoj.org/papers/0b514c6894780f3cc81ed88c141631d4
https://zenodo.org/badge/latestdoi/155578190
https://en.wikipedia.org/wiki/Horner%27s_method
https://en.wikipedia.org/wiki/Horner%27s_method
https://dl.acm.org/doi/pdf/10.1145/980175.980179
https://dl.acm.org/doi/pdf/10.1145/980175.980179
https://github.com/jannikmi/multivar_horner
https://pypi.python.org/pypi/multivar_horner/
https://arxiv.org/abs/2007.13152

multivar_horner, Release /bin/sh: 1: poetry: not found

3.1 Dependencies

python>=3.6, numpy>=1.16, numba>=0.48

3.2 License

multivar_horner is distributed under the terms of the MIT license (see LICENSE).

3.3 Benchmarks

To obtain meaningful results the benchmarks presented here use polynomials sampled randomly with the following
procedure: In order to draw polynomials with uniformly random occupancy, the probability of monomials being present
is picked randomly. For a fixed maximal degree n in m dimensions there are (n+1)^m possible exponent vectors
corresponding to monomials. Each of these monomials is being activated with the chosen probability.

Refer to [5] for an exact definition of the maximal degree.

For each maximal degree up to 7 and until dimensionality 7, 5 polynomials were drawn randomly. Note that even
though the original monomials are not actually present in a Horner factorisation, the amount of coefficients however is
identical to the amount of coefficients of its canonical form.

Even though the amount of operations required for evaluating the polynomials grow exponentially with their size irre-
spective of the representation, the rate of growth is lower for the Horner factorisation.

Due to this, the bigger the polynomial the more compact the Horner factorisation representation is relative to the
canonical form. As a result the Horner factorisations are computationally easier to evaluate.

3.3.1 Numerical error

In order to compute the numerical error, each polynomial has been evaluated at a point chosen uniformly random
from $[-1; 1]^m$ with the different methods. The polynomial evaluation algorithms use 64-bit floating point numbers,
whereas the ground truth has been computed with 128-bit accuracy in order to avoid numerical errors in the ground
truth value. To receive more representative results, the obtained numerical error is being averaged over 100 tries with
uniformly random coefficients each in the range $[-1; 1]$, All errors are displayed as (averaged) absolute values.

With increasing size in terms of the amount of included coefficients the numerical error of both the canonical form and
the Horner factorisation found by multivar_horner grow exponentially.

In comparison to the canonical form however the Horner factorisation is much more numerically stable. This has also
been visualised in the following figure:

Note: if you require an even higher numerical stability you can set FLOAT_DTYPE = numpy.float128 or
FLOAT_DTYPE = numpy.longfloat in global_settings.py. Then however the jit compilation has to be removed
in helper_fcts_numba.py (Numba does not support float128).

14 Chapter 3. About

https://github.com/jannikmi/multivar_horner/blob/master/LICENSE

multivar_horner, Release /bin/sh: 1: poetry: not found

Fig. 1: amount of operations required to evaluate randomly generated polynomials.

3.3. Benchmarks 15

multivar_horner, Release /bin/sh: 1: poetry: not found

Fig. 2: numerical error of evaluating randomly generated polynomials of varying sizes.

16 Chapter 3. About

multivar_horner, Release /bin/sh: 1: poetry: not found

Fig. 3: numerical error of evaluating randomly generated polynomials in canonical form relative to the Horner factori-
sation.

3.3. Benchmarks 17

multivar_horner, Release /bin/sh: 1: poetry: not found

3.3.2 Speed tests

The following speed benchmarks have been performed on a 2017 MacBook Pro: 4x2,8 GHz Intel Core i7 CPU, 16
GB 2133 MHz LPDDR3 RAM, macOS 10.13 High Sierra. The software versions in use were: multivar_horner
2.0.0, python 3.8.2, numpy 1.18.1 and numba 0.48.0 Both evaluation algorithms (with and without Horner
factorisation) make use of Numba just in time compiled functions.

Speed test:
testing 100 evenly distributed random polynomials
average timings per polynomial:

parameters | setup time (s) | eval time (s) ␣
→˓ | # operations | lucrative after
dim | max_deg | canonical | horner | delta | canonical | horner |␣
→˓delta | canonical | horner | delta | # evals
==
1 | 1 | 4.90e-05 | 2.33e-04 | 3.8 x more | 8.96e-06 | 1.28e-05 | 0.4␣
→˓x more | 3 | 1 | 2.0 x less | -
1 | 2 | 5.24e-05 | 1.95e-04 | 2.7 x more | 3.42e-06 | 6.01e-06 | 0.8␣
→˓x more | 4 | 2 | 1.0 x less | -
1 | 3 | 5.07e-05 | 2.31e-04 | 3.6 x more | 3.48e-06 | 5.86e-06 | 0.7␣
→˓x more | 6 | 3 | 1.0 x less | -
1 | 4 | 5.04e-05 | 2.65e-04 | 4.3 x more | 3.59e-06 | 5.62e-06 | 0.6␣
→˓x more | 7 | 4 | 0.8 x less | -
1 | 5 | 5.08e-05 | 3.04e-04 | 5.0 x more | 3.49e-06 | 8.47e-06 | 1.4␣
→˓x more | 8 | 6 | 0.3 x less | -
1 | 6 | 4.81e-05 | 4.65e-04 | 8.7 x more | 3.54e-06 | 6.72e-06 | 0.9␣
→˓x more | 10 | 7 | 0.4 x less | -
1 | 7 | 5.39e-05 | 4.00e-04 | 6.4 x more | 3.95e-06 | 6.49e-06 | 0.6␣
→˓x more | 12 | 8 | 0.5 x less | -
1 | 8 | 5.19e-05 | 3.83e-04 | 6.4 x more | 5.63e-06 | 6.16e-06 | 0.1␣
→˓x more | 12 | 8 | 0.5 x less | -
1 | 9 | 4.88e-05 | 4.42e-04 | 8.0 x more | 3.73e-06 | 6.05e-06 | 0.6␣
→˓x more | 14 | 10 | 0.4 x less | -
1 | 10 | 4.89e-05 | 5.41e-04 | 10 x more | 3.80e-06 | 7.11e-06 | 0.9␣
→˓x more | 15 | 10 | 0.5 x less | -

2 | 1 | 8.34e-05 | 3.11e-04 | 2.7 x more | 3.85e-06 | 6.09e-06 | 0.6␣
→˓x more | 11 | 3 | 2.7 x less | -
2 | 2 | 4.96e-05 | 7.05e-04 | 13 x more | 3.80e-06 | 5.82e-06 | 0.5␣
→˓x more | 26 | 10 | 1.6 x less | -
2 | 3 | 5.20e-05 | 9.75e-04 | 18 x more | 4.50e-06 | 6.70e-06 | 0.5␣
→˓x more | 38 | 16 | 1.4 x less | -
2 | 4 | 5.93e-05 | 1.44e-03 | 23 x more | 5.53e-06 | 7.12e-06 | 0.3␣
→˓x more | 63 | 27 | 1.3 x less | -
2 | 5 | 5.26e-05 | 2.25e-03 | 42 x more | 6.49e-06 | 6.46e-06 | -0.0␣
→˓x more | 91 | 39 | 1.3 x less | 59828
2 | 6 | 5.31e-05 | 2.90e-03 | 54 x more | 7.65e-06 | 6.55e-06 | 0.2␣
→˓x less | 127 | 54 | 1.4 x less | 2595
2 | 7 | 5.72e-05 | 3.76e-03 | 65 x more | 9.02e-06 | 6.03e-06 | 0.5␣
→˓x less | 164 | 70 | 1.3 x less | 1238
2 | 8 | 5.32e-05 | 4.39e-03 | 81 x more | 9.71e-06 | 6.06e-06 | 0.6␣
→˓x less | 198 | 84 | 1.4 x less | 1186

(continues on next page)

18 Chapter 3. About

multivar_horner, Release /bin/sh: 1: poetry: not found

(continued from previous page)

2 | 9 | 5.27e-05 | 5.04e-03 | 95 x more | 1.08e-05 | 7.25e-06 | 0.5␣
→˓x less | 230 | 99 | 1.3 x less | 1418
2 | 10 | 5.47e-05 | 6.74e-03 | 122 x more | 1.36e-05 | 6.46e-06 | 1.1␣
→˓x less | 310 | 132 | 1.3 x less | 935

3 | 1 | 4.96e-05 | 5.69e-04 | 10 x more | 3.70e-06 | 6.18e-06 | 0.7␣
→˓x more | 26 | 7 | 2.7 x less | -
3 | 2 | 5.34e-05 | 2.02e-03 | 37 x more | 5.43e-06 | 6.70e-06 | 0.2␣
→˓x more | 97 | 28 | 2.5 x less | -
3 | 3 | 5.42e-05 | 4.47e-03 | 82 x more | 8.88e-06 | 6.13e-06 | 0.4␣
→˓x less | 222 | 68 | 2.3 x less | 1605
3 | 4 | 5.59e-05 | 8.40e-03 | 149 x more | 1.44e-05 | 6.92e-06 | 1.1␣
→˓x less | 434 | 133 | 2.3 x less | 1115
3 | 5 | 5.73e-05 | 1.35e-02 | 236 x more | 2.10e-05 | 1.36e-05 | 0.5␣
→˓x less | 685 | 211 | 2.2 x less | 1809
3 | 6 | 7.70e-05 | 2.32e-02 | 300 x more | 3.72e-05 | 8.75e-06 | 3.3␣
→˓x less | 1159 | 355 | 2.3 x less | 811
3 | 7 | 6.86e-05 | 3.46e-02 | 504 x more | 5.71e-05 | 8.90e-06 | 5.4␣
→˓x less | 1787 | 543 | 2.3 x less | 717
3 | 8 | 7.07e-05 | 4.64e-02 | 655 x more | 6.97e-05 | 9.97e-06 | 6.0␣
→˓x less | 2402 | 730 | 2.3 x less | 775
3 | 9 | 8.34e-05 | 6.90e-02 | 826 x more | 1.05e-04 | 1.15e-05 | 8.2␣
→˓x less | 3613 | 1084 | 2.3 x less | 736
3 | 10 | 9.21e-05 | 9.54e-02 | 1034 x more | 1.42e-04 | 1.35e-05 | 9.5␣
→˓x less | 4988 | 1485 | 2.4 x less | 742

4 | 1 | 5.45e-05 | 1.25e-03 | 22 x more | 4.94e-06 | 6.49e-06 | 0.3␣
→˓x more | 67 | 14 | 3.8 x less | -
4 | 2 | 5.83e-05 | 7.20e-03 | 122 x more | 1.19e-05 | 7.65e-06 | 0.6␣
→˓x less | 390 | 91 | 3.3 x less | 1673
4 | 3 | 6.57e-05 | 2.35e-02 | 357 x more | 3.39e-05 | 7.93e-06 | 3.3␣
→˓x less | 1295 | 303 | 3.3 x less | 903
4 | 4 | 7.22e-05 | 4.96e-02 | 686 x more | 6.68e-05 | 1.02e-05 | 5.6␣
→˓x less | 2753 | 653 | 3.2 x less | 874
4 | 5 | 9.85e-05 | 1.17e-01 | 1186 x more | 1.56e-04 | 1.74e-05 | 8.0␣
→˓x less | 6588 | 1535 | 3.3 x less | 843
4 | 6 | 1.40e-04 | 1.98e-01 | 1416 x more | 2.66e-04 | 1.96e-05 | 13 x␣
→˓less | 11036 | 2582 | 3.3 x less | 802
4 | 7 | 1.77e-04 | 3.27e-01 | 1846 x more | 4.29e-04 | 2.93e-05 | 14 x␣
→˓less | 18271 | 4276 | 3.3 x less | 820
4 | 8 | 2.77e-04 | 5.97e-01 | 2153 x more | 8.33e-04 | 4.72e-05 | 17 x␣
→˓less | 33518 | 7736 | 3.3 x less | 760
4 | 9 | 3.82e-04 | 8.90e-01 | 2330 x more | 1.16e-03 | 6.35e-05 | 17 x␣
→˓less | 47086 | 10944 | 3.3 x less | 812
4 | 10 | 5.44e-04 | 1.30e+00 | 2388 x more | 1.80e-03 | 8.80e-05 | 20 x␣
→˓less | 73109 | 16873 | 3.3 x less | 758

3.3. Benchmarks 19

multivar_horner, Release /bin/sh: 1: poetry: not found

3.4 Related work

This package has been created due to the recent advances in multivariate polynomial interpolation [6, 7]. High dimen-
sional interpolants of large degrees create the demand for evaluating multivariate polynomials computationally efficient
and numerically stable.

[8] shows how factorisation trees can be used to evaluate multivariate polynomials and their derivatives.

In [9] Monte Carlo tree search has been used to find more performant factorisations than with greedy heuristics.

Other representations of polynomials are being presented, among others, in [10, 11].

3.5 Contact

Tell me if and how your are using this package. This encourages me to develop and test it further.

Most certainly there is stuff I missed, things I could have optimized even further or explained more clearly, etc. I would
be really glad to get some feedback.

If you encounter any bugs, have suggestions etc. do not hesitate to open an Issue or add a Pull Requests on Git.
Please refer to the contribution guidelines

3.6 Acknowledgements

Thanks to:

Steve for valuable feedback and writing tests.

20 Chapter 3. About

https://github.com/elcorto

CHAPTER

FOUR

OPTIMAL HORNER FACTORISATIONS

See this code for an example usage.

Instead of using a heuristic to choose the next factor one can allow a search over all possible (meaningful) factorisations
in order to arrive at a minimal Horner factorisation. The amount of possible factorisations however is increasing
exponentially with the degree of a polynomial and its amount of monomials. One possibility to avoid computing each
factorisation is to employ a version of A*-search [12] adapted for factorisation trees: • Initialise a set of all meaningful
possible first level Newton factorisations • Rank all factorisation according to a lower bound (“heuristic”) of their lowest
possible amount of operations • Iteratively factorise the most promising factorisation and update the heuristic • Stop
when the most promising factorisation is fully factorised

This approach is guaranteed to yield a minimal Horner factorisation, but its performance highly depends on the heuristic
in use: Irrelevant factorisations are only being ignored if the heuristic is not too optimistic in estimating the amount of
operations. On the other hand the heuristic must be easy to compute, because it would otherwise be computationally
cheaper to just try all different factorisations. Even though it missing to cover exponentiations, the branch-and-bound
method suggested in [13] (ch. 3.1) is almost identical to this procedure.

Even with a good heuristic this method is only traceable for small polynomials because of its increased resource re-
quirements. Since experiments show that factorisations obtained by choosing one factorisation according to a heuristic
have the same or only a slightly higher amount of included operations [13] (ch. 7), the computational effort of this
approach is not justifiable in most cases. A use case however is to compute and store a minimal representation of a
polynomial in advance if possible.

NOTES:

• for the small polynomial examples in the current tests, the results were identical (in terms of #ops) with the
approach of just using the default heuristic = trying one factorisation (further analysis needed)!

• in some cases this approach currently is trying all possible factorisations, because the heuristic in use is too
optimistic (= brute force, further analysis and improvements needed)

• this requires MUCH more computational resources than just trying one factorisation (the number of possible
factorisations is growing exponentially with the size of the polynomial!).

• there are possibly many optimal Horner factorisations of a multivariate polynomial. one could easily adapt this
approach to find all optimal Horner factorisations

• even an optimal Horner factorisation must not be the globally minimal representation of a polynomial. there are
possibly better types of factorisations and techniques: e.g. “algebraic factorisation”, “common subexpression
elimination”

• there are multiple possible concepts of optimality (or minimality) of a polynomial

21

multivar_horner, Release /bin/sh: 1: poetry: not found

22 Chapter 4. Optimal Horner Factorisations

CHAPTER

FIVE

API DOCUMENTATION

5.1 HornerMultivarPolynomial

class multivar_horner.HornerMultivarPolynomial(coefficients, exponents, rectify_input: bool = False,
compute_representation: bool = False, verbose: bool =
False, keep_tree: bool = False, store_c_instr: bool =
False, store_numpy_recipe: bool = False, *args,
**kwargs)

Bases: AbstractPolynomial

a representation of a multivariate polynomial using Horner factorisation

after computing the factorised representation of the polynomial, the instructions required for evaluation are being
compiled and stored. The default format is C instructions. When there is no C compiler installed, the fallback op-
tion is encoding the required instructions in numpy arrays (here referred to as “recipes”), which can be processed
by (numba) just in time compiled functions.

Parameters

• coefficients – ndarray of floats with shape (N,1) representing the coefficients of the
monomials NOTE: coefficients with value 0 and 1 are allowed and will not affect the in-
ternal representation, because coefficients must be replaceable

• exponents – ndarray of unsigned integers with shape (N,m) representing the exponents of
the monomials where m is the number of dimensions (self.dim), the ordering corresponds to
the ordering of the coefficients, every exponent row has to be unique!

• rectify_input – bool, default=False whether to convert coefficients and exponents into
compatible numpy arrays with this set to True, coefficients and exponents can be given in
standard python arrays

• compute_representation – bool, default=False whether to compute a string representa-
tion of the polynomial

• verbose – bool, default=False whether to print status statements

• keep_tree – whether the factorisation tree object should be kept in memory after finishing
factorisation

• store_c_instr – whether a C file with all required evaluation instructions should be created
under any circumstances. By default the class will use C based evaluation, but skip if no
compiler (gcc/cc) is installed.

• store_numpy_recipe – whether a pickle file with all required evaluation instructions in
the custom numpy+numba format should be created under any circumstances. By default the
class will use C based evaluation and only use this evaluation format as fallback.

23

multivar_horner, Release /bin/sh: 1: poetry: not found

num_monomials

the amount of coefficients/monomials N of the polynomial

dim

the dimensionality m of the polynomial NOTE: the polynomial needs not to actually depend on all m
dimensions

unused_variables

the dimensions the polynomial does not depend on

num_ops

the amount of mathematical operations required to evaluate the polynomial in this representation

representation

a human readable string visualising the polynomial representation

total_degree

the usual notion of degree for a polynomial. = the maximum sum of exponents in any of its monomials =
the maximum l_1-norm of the exponent vectors of all monomials in contrast to 1D polynomials, different
concepts of degrees exist for polynomials in multiple dimensions. following the naming in [1] L. Trefethen,
“Multivariate polynomial approximation in the hypercube”, Proceedings of the American Mathematical
Society, vol. 145, no. 11, pp. 4837–4844, 2017.

euclidean_degree

the maximum l_2-norm of the exponent vectors of all monomials. NOTE: this is not in general an integer

maximal_degree

the largest exponent in any of its monomials = the maximum l_infinity-norm of the exponent vectors of all
monomials

factorisation

a tuple of factorisation_tree and factor_container. s. below

factorisation_tree

the object oriented, recursive data structure representing the factorisation (only if keep_tree=True)

factor_container

the object containing all (unique) factors of the factorisation (only if keep_tree=True)

root_value_idx

the index in the value array where the value of this polynomial (= root of the factorisation_tree) will be
stored

value_array_length

the amount of addresses (storage) required to evaluate the polynomial. for evaluating the polynomial in tree
form intermediary results have to be stored in a value array. the value array begins with the coefficients of
the polynomial. (without further optimisation) every factor requires its own address.

copy_recipe

ndarray encoding the operations required to evaluate all scalar factors with exponent 1

scalar_recipe

ndarray encoding the operations required to evaluate all remaining scalar factors

monomial_recipe

ndarray encoding the operations required to evaluate all monomial factors

24 Chapter 5. API documentation

multivar_horner, Release /bin/sh: 1: poetry: not found

tree_recipe

ndarray encoding the addresses required to evaluate the polynomial values of the factorisation_tree.

tree_ops

ndarray encoding the type of operation required to evaluate the polynomial values of the factorisation_tree.
encoded as a boolean ndarray separate from tree_recipe, since only the two operations ADD & MUL need
to be encoded.

Raises

• TypeError – if coefficients or exponents are not given as ndarrays of the required dtype

• ValueError – if coefficients or exponents do not have the required shape or do not fulfill
the other requirements

__init__(coefficients, exponents, rectify_input: bool = False, compute_representation: bool = False,
verbose: bool = False, keep_tree: bool = False, store_c_instr: bool = False, store_numpy_recipe:
bool = False, *args, **kwargs)

root_class: Type

keep_tree: bool

value_array_length: int

recipe: Tuple

ctype_x

ctype_coeff

property factorisation_tree: BasePolynomialNode

property factor_container: FactorContainer

compute_string_representation(coeff_fmt_str: str = '{:.2}', factor_fmt_str: str = 'x_{dim}^{exp}',
*args, **kwargs)→ str

computes a string representation of the polynomial and sets self.representation

Returns
a string representing this polynomial instance

eval(x: ndarray | List[float], rectify_input: bool = False)→ float
computes the value of the polynomial at query point x

either uses C or numpy+Numba evaluation

Parameters

• x – ndarray of floats with shape = [self.dim] representing the query point

• rectify_input – whether to convert coefficients and exponents into compatible numpy
arrays with this set to True, the query point x can be given in standard python arrays

Returns
the value of the polynomial at point x

Raises

• TypeError – if x is not given as ndarray of dtype float

• ValueError – if x does not have the shape [self.dim]

5.1. HornerMultivarPolynomial 25

multivar_horner, Release /bin/sh: 1: poetry: not found

eval_complex(x: ndarray)→ complex128
computes the value of the polynomial at a complex query point x

Parameters
x – the query point given as numpy complex type

Returns
the complex value of the polynomial at point x

Raises

• TypeError – if x is not given as ndarray of dtype complex

• ValueError – if x does not have the shape [self.dim]

property c_eval_fct

get_c_file_name(ending: str = '.c')→ str

property c_file: Path

property c_file_compiled

property recipe_file: Path

get_c_instructions()→ str

factorisation

root_value_idx

use_c_eval

change_coefficients(coefficients: ndarray | List[float], rectify_input: bool = False,
compute_representation: bool = False, in_place: bool = False, *args, **kwargs)→
AbstractPolynomial

coefficients: ndarray

compute_representation: bool

dim: int

euclidean_degree: float

exponents: ndarray

export_pickle(path: str = 'multivar_polynomial.pickle')

get_gradient(*args, **kwargs)→ List[AbstractPolynomial]

Note: all arguments will be passed to the constructor of the derivative polynomials

Returns
the list of all partial derivatives

26 Chapter 5. API documentation

multivar_horner, Release /bin/sh: 1: poetry: not found

get_partial_derivative(i: int, *args, **kwargs)→ AbstractPolynomial
retrieves a partial derivative

Note: all given additional arguments will be passed to the constructor of the derivative polynomial

Parameters
i – dimension to derive with respect to. ATTENTION: dimension counting starts with 1 (i
>= 1)

Returns
the partial derivative of this polynomial wrt. the i-th dimension

maximal_degree: int

num_monomials: int

num_ops: int

print(*args)

representation: str

total_degree: int

unused_variables

verbose: bool

5.2 MultivarPolynomial

class multivar_horner.MultivarPolynomial(coefficients: ndarray | List[float], exponents: ndarray |
List[List[int]], rectify_input: bool = False,
compute_representation: bool = False, verbose: bool = False,
*args, **kwargs)

Bases: AbstractPolynomial

a representation of a multivariate polynomial in ‘canonical form’ (without any factorisation)

Parameters

• coefficients – ndarray of floats with shape (N,1) representing the coefficients of the
monomials NOTE: coefficients with value 0 and 1 are allowed and will not affect the in-
ternal representation, because coefficients must be replaceable

• exponents – ndarray of unsigned integers with shape (N,m) representing the exponents of
the monomials where m is the number of dimensions (self.dim), the ordering corresponds to
the ordering of the coefficients, every exponent row has to be unique!

• rectify_input – bool, default=False whether to convert coefficients and exponents into
compatible numpy arrays with this set to True, coefficients and exponents can be given in
standard python arrays

• compute_representation – bool, default=False whether to compute a string representa-
tion of the polynomial

• verbose – bool, default=False whether to print status statements

5.2. MultivarPolynomial 27

multivar_horner, Release /bin/sh: 1: poetry: not found

num_monomials

the amount of coefficients/monomials N of the polynomial

dim

the dimensionality m of the polynomial NOTE: the polynomial needs not to actually depend on all m
dimensions

unused_variables

the dimensions the polynomial does not depend on

num_ops

the amount of mathematical operations required to evaluate the polynomial in this representation

representation

a human readable string visualising the polynomial representation

Raises

• TypeError – if coefficients or exponents are not given as ndarrays of the required dtype

• ValueError – if coefficients or exponents do not have the required shape or do not fulfill
the other requirements or rectify_input=True and there are negative exponents

__init__(coefficients: ndarray | List[float], exponents: ndarray | List[List[int]], rectify_input: bool = False,
compute_representation: bool = False, verbose: bool = False, *args, **kwargs)

num_ops: int

compute_string_representation(coeff_fmt_str: str = '{:.2}', factor_fmt_str: str = 'x_{dim}^{exp}',
*args, **kwargs)→ str

computes a string representation of the polynomial and sets self.representation

Returns
a string representing this polynomial instance

eval(x: ndarray | List[float], rectify_input: bool = False)→ float
computes the value of the polynomial at query point x

makes use of fast Numba just in time compiled functions

Parameters

• x – ndarray of floats with shape = [self.dim] representing the query point

• rectify_input – bool, default=False whether to convert coefficients and exponents into
compatible numpy arrays with this set to True, the query point x can be given in standard
python arrays

Returns
the value of the polynomial at point x

Raises

• TypeError – if x is not given as ndarray of dtype float

• ValueError – if x does not have the shape [self.dim]

eval_complex(x: ndarray)→ complex128
computes the value of the polynomial at a complex query point x

Parameters
x – the query point given as numpy complex type

28 Chapter 5. API documentation

multivar_horner, Release /bin/sh: 1: poetry: not found

Returns
the complex value of the polynomial at point x

Raises

• TypeError – if x is not given as ndarray of dtype complex

• ValueError – if x does not have the shape [self.dim]

compute_representation: bool

coefficients: ndarray

euclidean_degree: float

exponents: ndarray

num_monomials: int

dim: int

maximal_degree: int

total_degree: int

unused_variables

representation: str

verbose: bool

change_coefficients(coefficients: ndarray | List[float], rectify_input: bool = False,
compute_representation: bool = False, in_place: bool = False, *args, **kwargs)→
AbstractPolynomial

export_pickle(path: str = 'multivar_polynomial.pickle')

get_gradient(*args, **kwargs)→ List[AbstractPolynomial]

Note: all arguments will be passed to the constructor of the derivative polynomials

Returns
the list of all partial derivatives

get_partial_derivative(i: int, *args, **kwargs)→ AbstractPolynomial
retrieves a partial derivative

Note: all given additional arguments will be passed to the constructor of the derivative polynomial

Parameters
i – dimension to derive with respect to. ATTENTION: dimension counting starts with 1 (i
>= 1)

Returns
the partial derivative of this polynomial wrt. the i-th dimension

print(*args)

5.2. MultivarPolynomial 29

multivar_horner, Release /bin/sh: 1: poetry: not found

5.3 HornerMultivarPolynomialOpt

class multivar_horner.HornerMultivarPolynomialOpt(coefficients, exponents, rectify_input: bool = False,
compute_representation: bool = False, verbose:
bool = False, keep_tree: bool = False,
store_c_instr: bool = False, store_numpy_recipe:
bool = False, *args, **kwargs)

Bases: HornerMultivarPolynomial

a Horner factorised polynomial with an optimal factorisation found by searching all possible factorisations

Optimality in this context refers to the minimal amount of operations needed for evaluation in comparison to
other Horner factorisation (not other factorisatio/optimisation techniques).

NOTES:

• this requires MUCH more computational resources than just trying one factorisation
(the number of possible factorisations is growing exponentially with the size of the polynomial!).

• for the small polynomial examples in the current tests, the found factorisations were not superior

root_class: Type

factorisation

root_value_idx

value_array_length: int

keep_tree: bool

use_c_eval

recipe: Tuple

ctype_x

ctype_coeff

__init__(coefficients, exponents, rectify_input: bool = False, compute_representation: bool = False,
verbose: bool = False, keep_tree: bool = False, store_c_instr: bool = False, store_numpy_recipe:
bool = False, *args, **kwargs)

property c_eval_fct

property c_file: Path

property c_file_compiled

change_coefficients(coefficients: ndarray | List[float], rectify_input: bool = False,
compute_representation: bool = False, in_place: bool = False, *args, **kwargs)→
AbstractPolynomial

coefficients: ndarray

compute_representation: bool

30 Chapter 5. API documentation

multivar_horner, Release /bin/sh: 1: poetry: not found

compute_string_representation(coeff_fmt_str: str = '{:.2}', factor_fmt_str: str = 'x_{dim}^{exp}',
*args, **kwargs)→ str

computes a string representation of the polynomial and sets self.representation

Returns
a string representing this polynomial instance

dim: int

euclidean_degree: float

eval(x: ndarray | List[float], rectify_input: bool = False)→ float
computes the value of the polynomial at query point x

either uses C or numpy+Numba evaluation

Parameters

• x – ndarray of floats with shape = [self.dim] representing the query point

• rectify_input – whether to convert coefficients and exponents into compatible numpy
arrays with this set to True, the query point x can be given in standard python arrays

Returns
the value of the polynomial at point x

Raises

• TypeError – if x is not given as ndarray of dtype float

• ValueError – if x does not have the shape [self.dim]

eval_complex(x: ndarray)→ complex128
computes the value of the polynomial at a complex query point x

Parameters
x – the query point given as numpy complex type

Returns
the complex value of the polynomial at point x

Raises

• TypeError – if x is not given as ndarray of dtype complex

• ValueError – if x does not have the shape [self.dim]

exponents: ndarray

export_pickle(path: str = 'multivar_polynomial.pickle')

property factor_container: FactorContainer

property factorisation_tree: BasePolynomialNode

get_c_file_name(ending: str = '.c')→ str

get_c_instructions()→ str

get_gradient(*args, **kwargs)→ List[AbstractPolynomial]

Note: all arguments will be passed to the constructor of the derivative polynomials

5.3. HornerMultivarPolynomialOpt 31

multivar_horner, Release /bin/sh: 1: poetry: not found

Returns
the list of all partial derivatives

get_partial_derivative(i: int, *args, **kwargs)→ AbstractPolynomial
retrieves a partial derivative

Note: all given additional arguments will be passed to the constructor of the derivative polynomial

Parameters
i – dimension to derive with respect to. ATTENTION: dimension counting starts with 1 (i
>= 1)

Returns
the partial derivative of this polynomial wrt. the i-th dimension

maximal_degree: int

num_monomials: int

num_ops: int

print(*args)

property recipe_file: Path

representation: str

total_degree: int

unused_variables

verbose: bool

32 Chapter 5. API documentation

CHAPTER

SIX

CONTRIBUTION GUIDELINES

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

6.1 Types of Contributions

6.1.1 Report Bugs

Report bugs via Github Issues.

If you are reporting a bug, please include:

• Your version of this package, python and Numba (if you use it)

• Any other details about your local setup that might be helpful in troubleshooting, e.g. operating system.

• Detailed steps to reproduce the bug.

• Detailed description of the bug (error log etc.).

6.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

6.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “help wanted” and not assigned to anyone is open to
whoever wants to implement it - please leave a comment to say you have started working on it, and open a pull request
as soon as you have something working, so that Travis starts building it.

Issues without “help wanted” generally already have some code ready in the background (maybe it’s not yet open
source), but you can still contribute to them by saying how you’d find the fix useful, linking to known prior art, or other
such help.

33

https://github.com/jannikmi/multivar_horner/issues

multivar_horner, Release /bin/sh: 1: poetry: not found

6.1.4 Write Documentation

Probably for some features the documentation is missing or unclear. You can help with that!

6.1.5 Submit Feedback

The best way to send feedback is to file an issue via Github Issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement. Create multiple issues if necessary.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

6.2 Get Started!

Ready to contribute? Here’s how to set up this package for local development.

• Fork this repo on GitHub.

• Clone your fork locally

• To make changes, create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

• Check out the instructions and notes in publish.py

• Install tox and run the tests:

$ pip install tox
$ tox

The tox.ini file defines a large number of test environments, for different Python etc., plus for
checking codestyle. During development of a feature/fix, you’ll probably want to run just one plus the
relevant codestyle:

$ tox -e codestyle

• Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

• Submit a pull request through the GitHub website. This will trigger the Travis CI build which runs the tests
against all supported versions of Python.

34 Chapter 6. Contribution Guidelines

https://github.com/jannikmi/multivar_horner/issues

CHAPTER

SEVEN

CHANGELOG

TODOs

• build html docs and include with package: “docs/_build/html/*”

• run speed and numerical tests with the new C evaluation method!

• Improve tests

• compare poly.num_ops of different factorisations. tests?

• num_ops currently will be 0 when caching is used (no factorisation will be computed)

POSSIBLE IMPROVEMENTS:

MultivarPoly (unfactorised):

• also make use of the concept of ‘recipes’ for efficiently evaluating the polynomial
skipping the most unnecessary operations (actually more fair comparison in terms of operations required
for evaluation)

• add option to skip this optimisation

HornerMultivarPoly:

• optimise factor evaluation (save instructions, ‘factor factorisation’):
a monomial factor consists of scalar factors and in turn some monomial factors consist of other monomial
factors

-> the result of evaluating a factor can be reused for evaluating other factors containing it

-> find the optimal ‘factorisation’ of the factors themselves

-> set the factorisation_idxs of each factor in total_degree to link the evaluation appropriately

idea:
choose ‘Goedel IDs’ as the monomial factor ids then the id of a monomial is the product of the ids of its scalar
factors find the highest possible divisor among all factor ids (corresponds to the ‘largest’ factor included in the
monomial) this leads to a minimal factorisation for evaluating the monomial values quickly

• add option to skip this optimisation to save build time

• optimise space requirement:
after building a factorisation tree for the factors themselves, then use its structure to cleverly reuse storage
space -> use compiler construction theory: minimal assembler register assignment, ‘graph coloring’. . .

• optimise ‘copy recipe’: avoid copy operations for accessing values of x

problem: inserting x into the value array causes operations as well and
complicates address assigment and recipe compilation

35

multivar_horner, Release /bin/sh: 1: poetry: not found

• when the polynomial does not depend on all variables, build a wrapper to maintain the same “interface”
but internally reduce the dimensionality, this reduced the size of the numpy arrays -> speed, storage benefit

• the evaluation of subtrees is independent and could theoretically be done in parallel
probably not worth the effort. more reasonable to just evaluate multiple polynomials in parallel

7.1 3.x.x (TBA)

internal:

• updated GitHub Actions workflow: skip publishing existing versions

• included ruff pre commit hook

• updated dependency lock

• included tests for python 3.12

7.2 3.1.0 (2023-02-15)

• supporting evaluation at complex query points as requested in issue #37

internal: * hypothesis tests: evaluation equality of Horner and regular polynomials (up to numerical errors) * added
mypy typing pre-commit hook

7.3 3.0.5 (2022-12-10)

• bump pytest dependency version to >=7,<8 (vulnerability fix)

• less strict dependency pinning to support python 3.11

• added python 3.11 tests (not yet supporting numba)

• disabled numerical stability tests due to missing numpy support for high precision 128-bit float on arm64 archi-
tecture

7.4 3.0.4 (2022-07-10)

• bump numpy dependency version to 1.22 (vulnerability fix)

• officially supported python versions >=3.8,<3.11 (due to numpy and numba constraints)

36 Chapter 7. Changelog

multivar_horner, Release /bin/sh: 1: poetry: not found

7.5 3.0.3 (2022-06-15)

• bugfix: packaging. now completely based on pyproject.toml (poetry)

7.6 3.0.2 (2022-06-14)

• bugfix: optional numba dependency. numba imports were not optional

• bugfix: create __cache__ dir if not exists

• minor documentation improvements

• bumping dependencies

7.7 3.0.1 (2021-12-04)

ATTENTION: major changes:

• introduced the default behavior of compiling the evaluation instructions in C code (C compiler required)

• the previous numpy+numba evaluation using “recipes” is the fallback option in case the C file could not be
compiled

• as a consequence dropping numba as a required dependency

• added the “extra” numba to install on demand with: pip install multivar_horner[numba]

• introduced custom polynomial hashing and comparison operations

• using hash to cache and reuse the instructions for evaluation (for both C and recipe instructions)

• introduced constructions argument store_c_instr (HornerMultivarPolynomial) to force the storage of
evaluation code in C for later usage

• introduced constructions argument store_numpy_recipe (HornerMultivarPolynomial) to force the storage
of the custom “recipe” data structure required for the evaluation using numpy and numba

• introduced class HornerMultivarPolynomialOpt for optimal Horner Factorisations to separate code and sim-
plify tests

• as a consequence dropped construction argument find_optimal of class HornerMultivarPolynomial

• introduced constructions argument verbose to show the output of status print statements

• dropping official python3.6 support because numba did so (supporting Python3.7+)

internal:

• using poetry for dependency management

• using GitHub Actions for CI instead of travis

7.5. 3.0.3 (2022-06-15) 37

multivar_horner, Release /bin/sh: 1: poetry: not found

7.8 2.2.0 (2021-02-04)

ATTENTION: API changes:

• removed validate_input arguments. input will now always be validated (otherwise the numba jit compiled
functions will fail with cryptic error messages)

• black code style

• pre-commit checks

7.9 2.1.1 (2020-10-01)

Post-JOSS paper review release:

• Changed the method of counting the amount of operations of the polynomial representations. Only the multipli-
cations are being counted. Exponentiations count as (exponent-1) operations.

• the numerical tests compute the relative average error with an increased precision now

7.10 2.1.0 (2020-06-15)

ATTENTION: API changes:

• TypeError and ValueError are being raised instead of AssertionError in case of invalid input parameters
with validate_input=True

• added same parameters and behavior of rectify_input and validate_input in the .eval() function of
polynomials

internal:

• Use np.asarray() instead of np.array() to avoid unnecessary copies

• more test cases for invalid input parameters

7.11 2.0.0 (2020-04-28)

• BUGFIX: factor evaluation optimisation caused errors in rare cases. this optimisation has been removed com-
pletely. every factor occurring in a factorisation is being evaluated independently now. this simplifies the fac-
torisation process. the concept of “Goedel ID” (=unique encoding using prime numbers) is not required any
more

• ATTENTION: changed polynomial degree class attribute names to comply with naming conventions of the sci-
entific literature

• added __call__ method for evaluating a polynomial in a simplified notation v=p(x)

• fixed dependencies to: numpy>=1.16, numba>=0.48

• clarified docstrings (using Google style)

• more verbose error messages during input verification

• split up requirements.txt (into basic dependencies and test dependencies)

• added sphinx documentation

38 Chapter 7. Changelog

multivar_horner, Release /bin/sh: 1: poetry: not found

• updated benchmark results

tests:

• added test for numerical stability

• added plotting features for evaluating the numerical stability

• added tests comparing functionality to 1D numpy polynomials

• added tests comparing functionality to naive polynomial evaluation

• added basic API functionality test

internal:

• added class AbstractPolynomial

• added typing

• adjusted publishing routine

• testing multiple python versions

• using the specific tags of the supported python version for the build wheels

• removed example.py

7.12 1.3.0 (2020-03-14)

• NEW FEATURE: changing coefficients on the fly with poly.change_coefficients(coeffs)

• NEW DEPENDENCY: python3.6+ (for using f” format strings)

• the real valued coefficients are now included in the string representation of a factorised polynomial

• add contribution guidelines

• added instructions in readme, example.py

• restructured the factorisation routine (simplified, clean up)

• extended tests

7.13 1.2.0 (2019-05-19)

• support of newer numpy versions (ndarray.max() not supported)

• added plotting routine (partly taken from tests)

• added plots in readme

• included latest insights into readme

7.12. 1.3.0 (2020-03-14) 39

multivar_horner, Release /bin/sh: 1: poetry: not found

7.14 1.1.0 (2019-02-27)

• added option find_optimal to find an optimal factorisation with A* search, explanation in readme

• optimized heuristic factorisation (more clean approach using just binary trees)

• dropped option univariate_factors

• added option compute_representation to compute the string representation of a factorisation only when required

• added option keep_tree to keep the factorisation tree when required

• clarification and expansion of readme and example.py

• explained usage of optional parameters rectify_input=True and validate_input=True

• explained usage of functions get_gradient() and get_partial_derivative(i)

• averaged runtime in speed tests

7.15 1.0.1 (2018-11-12)

• introducing option to only factor out single variables with the highest usage with the optional parameter
univariate_factors=True

• compute the number of operations needed by the horner factorisation by the length of its recipe (instead of
traversing the full tree)

• instead of computing the value of scalar factors with exponent 1, just copy the values from the given x vector
(“copy recipe”)

• compile the initial value array at construction time

7.16 1.0.0 (2018-11-08)

• first stable release

7.17 0.0.1 (2018-10-05)

• birth of this package

40 Chapter 7. Changelog

CHAPTER

EIGHT

REFERENCES

41

multivar_horner, Release /bin/sh: 1: poetry: not found

42 Chapter 8. References

CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

43

multivar_horner, Release /bin/sh: 1: poetry: not found

44 Chapter 9. Indices and tables

BIBLIOGRAPHY

[1] William George Horner. Xxi. a new method of solving numerical equations of all orders, by continuous approxi-
mation. Philosophical Transactions of the Royal Society of London, pages 308–335, 1819.

[2] Martine Ceberio and Vladik Kreinovich. Greedy algorithms for optimizing multivariate horner schemes. ACM
SIGSAM Bulletin, 38(1):8–15, 2004.

[3] Juan Manuel Peña and Thomas Sauer. On the multivariate Horner scheme. SIAM journal on numerical analysis,
37(4):1186–1197, 2000.

[4] Juan Manuel Peña and Thomas Sauer. On the multivariate Horner scheme II: running error analysis. Computing,
65(4):313–322, 2000.

[5] Lloyd Trefethen. Multivariate polynomial approximation in the hypercube. Proceedings of the American Mathe-
matical Society, 145(11):4837–4844, 2017.

[6] Michael Hecht, Karl B Hoffmann, Bevan L Cheeseman, and Ivo F Sbalzarini. Multivariate Newton interpolation.
arXiv preprint arXiv:1812.04256, 2018.

[7] Michael Hecht and Ivo F. Sbalzarini. Fast interpolation and Fourier transform in high-dimensional spaces. In
K. Arai, S. Kapoor, and R. Bhatia, editors, Intelligent Computing. Proc. 2018 IEEE Computing Conf., Vol. 2,,
volume 857 of Advances in Intelligent Systems and Computing, 53–75. London, UK, 2018. Springer Nature.

[8] J Carnicer and M Gasca. Evaluation of multivariate polynomials and their derivatives. Mathematics of Computa-
tion, 54(189):231–243, 1990.

[9] Jan Kuipers, Aske Plaat, JAM Vermaseren, and H Jaap van den Herik. Improving multivariate Horner schemes
with Monte Carlo tree search. Computer Physics Communications, 184(11):2391–2395, 2013.

[10] Martin Mok-Don Lee. Factorization of multivariate polynomials. PhD thesis, Technische Universität Kaiser-
slautern, 2013.

[11] Charles E Leiserson, Liyun Li, Marc Moreno Maza, and Yuzhen Xie. Efficient evaluation of large polynomials.
In International Congress on Mathematical Software, 342–353. Springer, 2010.

[12] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of minimum
cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.

[13] Masakazu Kojima. Efficient evaluation of polynomials and their partial derivatives in homotopy continuation
methods. Journal of the Operations Research Society of Japan, 51(1):29–54, 2008.

45

multivar_horner, Release /bin/sh: 1: poetry: not found

46 Bibliography

PYTHON MODULE INDEX

m
multivar_horner, 23

47

multivar_horner, Release /bin/sh: 1: poetry: not found

48 Python Module Index

INDEX

Symbols
__init__() (multivar_horner.HornerMultivarPolynomial

method), 25
__init__() (multivar_horner.HornerMultivarPolynomialOpt

method), 30
__init__() (multivar_horner.MultivarPolynomial

method), 28

C
c_eval_fct (multivar_horner.HornerMultivarPolynomial

property), 26
c_eval_fct (multivar_horner.HornerMultivarPolynomialOpt

property), 30
c_file (multivar_horner.HornerMultivarPolynomial

property), 26
c_file (multivar_horner.HornerMultivarPolynomialOpt

property), 30
c_file_compiled (multi-

var_horner.HornerMultivarPolynomial prop-
erty), 26

c_file_compiled (multi-
var_horner.HornerMultivarPolynomialOpt
property), 30

change_coefficients() (multi-
var_horner.HornerMultivarPolynomial
method), 26

change_coefficients() (multi-
var_horner.HornerMultivarPolynomialOpt
method), 30

change_coefficients() (multi-
var_horner.MultivarPolynomial method),
29

coefficients (multivar_horner.HornerMultivarPolynomial
attribute), 26

coefficients (multivar_horner.HornerMultivarPolynomialOpt
attribute), 30

coefficients (multivar_horner.MultivarPolynomial at-
tribute), 29

compute_representation (multi-
var_horner.HornerMultivarPolynomial at-
tribute), 26

compute_representation (multi-

var_horner.HornerMultivarPolynomialOpt
attribute), 30

compute_representation (multi-
var_horner.MultivarPolynomial attribute),
29

compute_string_representation() (multi-
var_horner.HornerMultivarPolynomial
method), 25

compute_string_representation() (multi-
var_horner.HornerMultivarPolynomialOpt
method), 30

compute_string_representation() (multi-
var_horner.MultivarPolynomial method),
28

copy_recipe (multivar_horner.HornerMultivarPolynomial
attribute), 24

ctype_coeff (multivar_horner.HornerMultivarPolynomial
attribute), 25

ctype_coeff (multivar_horner.HornerMultivarPolynomialOpt
attribute), 30

ctype_x (multivar_horner.HornerMultivarPolynomial
attribute), 25

ctype_x (multivar_horner.HornerMultivarPolynomialOpt
attribute), 30

D
dim (multivar_horner.HornerMultivarPolynomial at-

tribute), 24, 26
dim (multivar_horner.HornerMultivarPolynomialOpt at-

tribute), 31
dim (multivar_horner.MultivarPolynomial attribute), 28,

29

E
euclidean_degree (multi-

var_horner.HornerMultivarPolynomial at-
tribute), 24, 26

euclidean_degree (multi-
var_horner.HornerMultivarPolynomialOpt
attribute), 31

euclidean_degree (multi-
var_horner.MultivarPolynomial attribute),

49

multivar_horner, Release /bin/sh: 1: poetry: not found

29
eval() (multivar_horner.HornerMultivarPolynomial

method), 25
eval() (multivar_horner.HornerMultivarPolynomialOpt

method), 31
eval() (multivar_horner.MultivarPolynomial method),

28
eval_complex() (multi-

var_horner.HornerMultivarPolynomial
method), 25

eval_complex() (multi-
var_horner.HornerMultivarPolynomialOpt
method), 31

eval_complex() (multivar_horner.MultivarPolynomial
method), 28

exponents (multivar_horner.HornerMultivarPolynomial
attribute), 26

exponents (multivar_horner.HornerMultivarPolynomialOpt
attribute), 31

exponents (multivar_horner.MultivarPolynomial
attribute), 29

export_pickle() (multi-
var_horner.HornerMultivarPolynomial
method), 26

export_pickle() (multi-
var_horner.HornerMultivarPolynomialOpt
method), 31

export_pickle() (multi-
var_horner.MultivarPolynomial method),
29

F
factor_container (multi-

var_horner.HornerMultivarPolynomial at-
tribute), 24

factor_container (multi-
var_horner.HornerMultivarPolynomial prop-
erty), 25

factor_container (multi-
var_horner.HornerMultivarPolynomialOpt
property), 31

factorisation (multi-
var_horner.HornerMultivarPolynomial at-
tribute), 24, 26

factorisation (multi-
var_horner.HornerMultivarPolynomialOpt
attribute), 30

factorisation_tree (multi-
var_horner.HornerMultivarPolynomial at-
tribute), 24

factorisation_tree (multi-
var_horner.HornerMultivarPolynomial prop-
erty), 25

factorisation_tree (multi-

var_horner.HornerMultivarPolynomialOpt
property), 31

G
get_c_file_name() (multi-

var_horner.HornerMultivarPolynomial
method), 26

get_c_file_name() (multi-
var_horner.HornerMultivarPolynomialOpt
method), 31

get_c_instructions() (multi-
var_horner.HornerMultivarPolynomial
method), 26

get_c_instructions() (multi-
var_horner.HornerMultivarPolynomialOpt
method), 31

get_gradient() (multi-
var_horner.HornerMultivarPolynomial
method), 26

get_gradient() (multi-
var_horner.HornerMultivarPolynomialOpt
method), 31

get_gradient() (multivar_horner.MultivarPolynomial
method), 29

get_partial_derivative() (multi-
var_horner.HornerMultivarPolynomial
method), 26

get_partial_derivative() (multi-
var_horner.HornerMultivarPolynomialOpt
method), 32

get_partial_derivative() (multi-
var_horner.MultivarPolynomial method),
29

H
HornerMultivarPolynomial (class in multi-

var_horner), 23
HornerMultivarPolynomialOpt (class in multi-

var_horner), 30

K
keep_tree (multivar_horner.HornerMultivarPolynomial

attribute), 25
keep_tree (multivar_horner.HornerMultivarPolynomialOpt

attribute), 30

M
maximal_degree (multi-

var_horner.HornerMultivarPolynomial at-
tribute), 24, 27

maximal_degree (multi-
var_horner.HornerMultivarPolynomialOpt
attribute), 32

50 Index

multivar_horner, Release /bin/sh: 1: poetry: not found

maximal_degree (multivar_horner.MultivarPolynomial
attribute), 29

module
multivar_horner, 23

monomial_recipe (multi-
var_horner.HornerMultivarPolynomial at-
tribute), 24

multivar_horner
module, 23

MultivarPolynomial (class in multivar_horner), 27

N
num_monomials (multi-

var_horner.HornerMultivarPolynomial at-
tribute), 23, 27

num_monomials (multi-
var_horner.HornerMultivarPolynomialOpt
attribute), 32

num_monomials (multivar_horner.MultivarPolynomial
attribute), 27, 29

num_ops (multivar_horner.HornerMultivarPolynomial
attribute), 24, 27

num_ops (multivar_horner.HornerMultivarPolynomialOpt
attribute), 32

num_ops (multivar_horner.MultivarPolynomial at-
tribute), 28

P
print() (multivar_horner.HornerMultivarPolynomial

method), 27
print() (multivar_horner.HornerMultivarPolynomialOpt

method), 32
print() (multivar_horner.MultivarPolynomial method),

29

R
recipe (multivar_horner.HornerMultivarPolynomial at-

tribute), 25
recipe (multivar_horner.HornerMultivarPolynomialOpt

attribute), 30
recipe_file (multivar_horner.HornerMultivarPolynomial

property), 26
recipe_file (multivar_horner.HornerMultivarPolynomialOpt

property), 32
representation (multi-

var_horner.HornerMultivarPolynomial at-
tribute), 24, 27

representation (multi-
var_horner.HornerMultivarPolynomialOpt
attribute), 32

representation (multivar_horner.MultivarPolynomial
attribute), 28, 29

root_class (multivar_horner.HornerMultivarPolynomial
attribute), 25

root_class (multivar_horner.HornerMultivarPolynomialOpt
attribute), 30

root_value_idx (multi-
var_horner.HornerMultivarPolynomial at-
tribute), 24, 26

root_value_idx (multi-
var_horner.HornerMultivarPolynomialOpt
attribute), 30

S
scalar_recipe (multi-

var_horner.HornerMultivarPolynomial at-
tribute), 24

T
total_degree (multivar_horner.HornerMultivarPolynomial

attribute), 24, 27
total_degree (multivar_horner.HornerMultivarPolynomialOpt

attribute), 32
total_degree (multivar_horner.MultivarPolynomial at-

tribute), 29
tree_ops (multivar_horner.HornerMultivarPolynomial

attribute), 25
tree_recipe (multivar_horner.HornerMultivarPolynomial

attribute), 24

U
unused_variables (multi-

var_horner.HornerMultivarPolynomial at-
tribute), 24, 27

unused_variables (multi-
var_horner.HornerMultivarPolynomialOpt
attribute), 32

unused_variables (multi-
var_horner.MultivarPolynomial attribute),
28, 29

use_c_eval (multivar_horner.HornerMultivarPolynomial
attribute), 26

use_c_eval (multivar_horner.HornerMultivarPolynomialOpt
attribute), 30

V
value_array_length (multi-

var_horner.HornerMultivarPolynomial at-
tribute), 24, 25

value_array_length (multi-
var_horner.HornerMultivarPolynomialOpt
attribute), 30

verbose (multivar_horner.HornerMultivarPolynomial
attribute), 27

verbose (multivar_horner.HornerMultivarPolynomialOpt
attribute), 32

verbose (multivar_horner.MultivarPolynomial at-
tribute), 29

Index 51

	Getting started
	Installation
	Basics

	Usage
	Horner factorisation
	canonical form
	string representation
	change the coefficients of a polynomial
	optimal Horner factorisations
	Caching
	evaluating a polynomial
	evaluating a polynomial at complex query points
	computing the partial derivative of a polynomial
	computing the gradient of a polynomial

	About
	Dependencies
	License
	Benchmarks
	Numerical error
	Speed tests

	Related work
	Contact
	Acknowledgements

	Optimal Horner Factorisations
	API documentation
	HornerMultivarPolynomial
	MultivarPolynomial
	HornerMultivarPolynomialOpt

	Contribution Guidelines
	Types of Contributions
	Report Bugs
	Fix Bugs
	Implement Features
	Write Documentation
	Submit Feedback

	Get Started!

	Changelog
	3.x.x (TBA)
	3.1.0 (2023-02-15)
	3.0.5 (2022-12-10)
	3.0.4 (2022-07-10)
	3.0.3 (2022-06-15)
	3.0.2 (2022-06-14)
	3.0.1 (2021-12-04)
	2.2.0 (2021-02-04)
	2.1.1 (2020-10-01)
	2.1.0 (2020-06-15)
	2.0.0 (2020-04-28)
	1.3.0 (2020-03-14)
	1.2.0 (2019-05-19)
	1.1.0 (2019-02-27)
	1.0.1 (2018-11-12)
	1.0.0 (2018-11-08)
	0.0.1 (2018-10-05)

	References
	Indices and tables
	Bibliography
	Python Module Index
	Index

